首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26972篇
  免费   862篇
  国内免费   1735篇
测绘学   1600篇
大气科学   2638篇
地球物理   5315篇
地质学   12913篇
海洋学   1399篇
天文学   1880篇
综合类   2351篇
自然地理   1473篇
  2024年   8篇
  2023年   56篇
  2022年   131篇
  2021年   151篇
  2020年   137篇
  2019年   121篇
  2018年   4871篇
  2017年   4164篇
  2016年   2716篇
  2015年   391篇
  2014年   232篇
  2013年   188篇
  2012年   1128篇
  2011年   2889篇
  2010年   2156篇
  2009年   2446篇
  2008年   2012篇
  2007年   2473篇
  2006年   165篇
  2005年   305篇
  2004年   503篇
  2003年   541篇
  2002年   392篇
  2001年   201篇
  2000年   159篇
  1999年   137篇
  1998年   106篇
  1997年   114篇
  1996年   88篇
  1995年   71篇
  1994年   75篇
  1993年   53篇
  1992年   46篇
  1991年   30篇
  1990年   24篇
  1989年   25篇
  1988年   31篇
  1987年   26篇
  1986年   17篇
  1985年   11篇
  1984年   15篇
  1983年   10篇
  1982年   10篇
  1981年   29篇
  1980年   25篇
  1979年   9篇
  1977年   7篇
  1976年   9篇
  1975年   8篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
991.
The aim of the time distribution methodology presented in this paper is to generate constellations whose satellites share a set of relative trajectories in a given time, and maintain that property over time without orbit corrections. The model takes into account a series of orbital perturbations such as the gravitational potential of the Earth, the atmospheric drag, the Sun and the Moon as disturbing third bodies and the solar radiation pressure. These perturbations are included in the design process of the constellation. Moreover, the whole methodology allows to design constellations with multiple relative trajectories that can be distributed in a minimum number of inertial orbits.  相似文献   
992.
In the framework of the planar and circular restricted three-body problem, we consider an asteroid that orbits the Sun in quasi-satellite motion with a planet. A quasi-satellite trajectory is a heliocentric orbit in co-orbital resonance with the planet, characterized by a nonzero eccentricity and a resonant angle that librates around zero. Likewise, in the rotating frame with the planet, it describes the same trajectory as the one of a retrograde satellite even though the planet acts as a perturbator. In the last few years, the discoveries of asteroids in this type of motion made the term “quasi-satellite” more and more present in the literature. However, some authors rather use the term “retrograde satellite” when referring to this kind of motion in the studies of the restricted problem in the rotating frame. In this paper, we intend to clarify the terminology to use, in order to bridge the gap between the perturbative co-orbital point of view and the more general approach in the rotating frame. Through a numerical exploration of the co-orbital phase space, we describe the quasi-satellite domain and highlight that it is not reachable by low eccentricities by averaging process. We will show that the quasi-satellite domain is effectively included in the domain of the retrograde satellites and neatly defined in terms of frequencies. Eventually, we highlight a remarkable high eccentric quasi-satellite orbit corresponding to a frozen ellipse in the heliocentric frame. We extend this result to the eccentric case (planet on an eccentric motion) and show that two families of frozen ellipses originate from this remarkable orbit.  相似文献   
993.
The paper refers to fictitious resonant orbits of planet type that surround both components of a binary system. In case of 16 studied examples a suitable choice of the starting values leads to a process of libration of special angular arguments and to an evolution with an at least temporary stay of the planet in the resonant orbit. The ratio of the periods of revolution of the binary and a planet is equal to 1:5. Eight orbits depend on the ratio 1:5 of the masses of the binary components, but two other ratios appear as well. The basis of this study is the planar, elliptic or circular restricted problem of three bodies, but remarks at the end of the text refer to a four-body problem.  相似文献   
994.
The focus of this paper is the design and station keeping of repeat-groundtrack orbits for Sun-synchronous satellites. A method to compute the semimajor axis of the orbit is presented together with a station-keeping strategy to compensate for the perturbation due to the atmospheric drag. The results show that the nodal period converges gradually with the increase of the order used in the zonal perturbations up to \(J_{15}\). A differential correction algorithm is performed to obtain the nominal semimajor axis of the reference orbit from the inputs of the desired nodal period, eccentricity, inclination and argument of perigee. To keep the satellite in the proximity of the repeat-groundtrack condition, a practical orbit maintenance strategy is proposed in the presence of errors in the orbital measurements and control, as well as in the estimation of the semimajor axis decay rate. The performance of the maintenance strategy is assessed via the Monte Carlo simulation and the validation in a high fidelity model. Numerical simulations substantiate the validity of proposed mean-elements-based orbit maintenance strategy for repeat-groundtrack orbits.  相似文献   
995.
Taking into consideration a probe moving in an elliptical orbit around a celestial body, the possibility of determining conditions which lead to constant values on average of all the orbit elements has been investigated here, considering the influence of the planetary oblateness and the long-term effects deriving from the attraction of several perturbing bodies. To this end, three equations describing the variation of orbit eccentricity, apsidal line and angular momentum unit vector have been first retrieved, starting from a vectorial expression of the Lagrange planetary equations and considering for the third-body perturbation the gravity-gradient approximation, and then exploited to demonstrate the feasibility of achieving the above-mentioned goal. The study has led to the determination of two families of solutions at constant mean orbit elements, both characterised by a co-planarity condition between the eccentricity vector, the angular momentum and a vector resulting from the combination of the orbital poles of the perturbing bodies. As a practical case, the problem of a probe orbiting the Moon has been faced, taking into account the temporal evolution of the perturbing poles of the Sun and Earth, and frozen solutions at argument of pericentre 0\(^{\circ }\) or 180\(^{\circ }\) have been found.  相似文献   
996.
We will show that the period T of a closed orbit of the planar circular restricted three body problem (viewed on rotating coordinates) depends on the region it encloses. Roughly speaking, we show that, \(2 T=k\pi +\int _\Omega g\) where k is an integer, \(\Omega \) is the region enclosed by the periodic orbit and \(g:{\mathbb {R}}^2\rightarrow {\mathbb {R}}\) is a function that only depends on the constant C known as the Jacobian constant; it does not depend on \(\Omega \). This theorem has a Keplerian flavor in the sense that it relates the period with the space “swept” by the orbit. As an application we prove that there is a neighborhood around \(L_4\) such that every periodic solution contained in this neighborhood must move clockwise. The same result holds true for \(L_5\).  相似文献   
997.
The Darwin-Kaula theory of bodily tides is intended for celestial bodies rotating without libration. We demonstrate that this theory, in its customary form, is inapplicable to a librating body. Specifically, in the presence of libration in longitude, the actual spectrum of Fourier tidal modes differs from the conventional spectrum rendered by the Darwin–Kaula theory for a nonlibrating celestial object. This necessitates derivation of formulae for the tidal torque and the tidal heating rate, that are applicable under libration. We derive the tidal spectrum for longitudinal forced libration with one and two main frequencies, generalisation to more main frequencies being straightforward. (By main frequencies we understand those emerging due to the triaxiality of the librating body.) Separately, we consider a case of free libration at one frequency (once again, generalisation to more frequencies being straightforward). We also calculate the tidal torque. This torque provides correction to the triaxiality-caused physical libration. Our theory is not self-consistent: we assume that the tidal torque is much smaller than the permanent-triaxiality-caused torque, so the additional libration due to tides is much weaker than the main libration due to the permanent triaxiality. Finally, we calculate the tidal dissipation rate in a body experiencing forced libration at the main mode, or free libration at one frequency, or superimposed forced and free librations.  相似文献   
998.
We use a secular model to describe the non-resonant dynamics of trans-Neptunian objects in the presence of an external ten-Earth-mass perturber. The secular dynamics is analogous to an “eccentric Kozai mechanism” but with both an inner component (the four giant planets) and an outer one (the eccentric distant perturber). By the means of Poincaré sections, the cases of a non-inclined or inclined outer planet are successively studied, making the connection with previous works. In the inclined case, the problem is reduced to two degrees of freedom by assuming a non-precessing argument of perihelion for the perturbing body. The size of the perturbation is typically ruled by the semi-major axis of the small body: we show that the classic integrable picture is still valid below about 70 AU, but it is progressively destroyed when we get closer to the external perturber. In particular, for \(a>150\) AU, large-amplitude orbital flips become possible, and for \(a>200\) AU, the Kozai libration islands at \(\omega =\pi /2\) and \(3\pi /2\) are totally submerged by the chaotic sea. Numerous resonance relations are highlighted. The most large and persistent ones are associated with apsidal alignments or anti-alignments with the orbit of the distant perturber.  相似文献   
999.
We study, by means of a spherical collapse model, the effect of shear, rotation, and baryons on a generalized Chaplygin gas (gCg) dominated universes. We show that shear, rotation, and the baryon presence slow down the collapse with respect to the simple spherical collapse model. The slowing down in the growth of density perturbation is able to solve the instability of the unified dark matter (UDM) models described in previous papers (e.g., Sandvik et al. 2004) at the linear perturbation level, as also shown by a direct comparison of our model with previous results.  相似文献   
1000.
In order to explore subsistence patterns in northern Shaanxi Province around 4,000 yr BP,28 human and 24 animal bones from the Shengedaliang site were sampled for stable carbon and nitrogen isotope ratio analysis.The results show that most people primarily subsisted on C_4 resources,e.g.millet and millet-related animal products,despite the fact that there was some intake of C_3 plants by some individuals.Stable nitrogen isotope values indicate that there were differences in meat consumption between individuals at the site.Pigs were mainly foddered with millet and millet byproducts,as well as some cattle,according to their highδ~(13)C values.However,most cattle and the sheep/goats consumed wild C_3 plants at Shengedaliang.Our above findings indicates that subsistence patterns in northern Shaanxi around 4,000 yr BP were characterized by millet farming,while the grassland animal husbandry,e.g.cattle and sheep/goats raising,displayed very little contribution to local economy.The intensive millet farming in northern Shaanxi provided enough food for population growth,ensured the accumulation of wealth,and consequently accelerated social differentiation and complexity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号